Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2310136, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639396

RESUMO

Dramatic growth of lithium dendrite, structural deterioration of LiCoO2 (LCO) cathode at high voltages, and unstable electrode/electrolyte interfaces pose significant obstacles to the practical application of high-energy-density LCO||Li batteries. In this work, a novel eutectogel electrolyte is developed by confining the nonflammable eutectic electrolyte in a polymer matrix. The eutectogel electrolyte can construct a robust solid electrolyte interphase (SEI) with inorganic-rich LiF and Li3N, contributing to a uniform Li deposition. Besides, the severe interface side reactions between LCO cathode and electrolyte can be retarded with an in situ formed protective layer. Correspondingly, Li||Li symmetrical cells achieve highly reversible Li plating/stripping over 1000 h. The LCO||Li full cell can maintain 72.5% capacity after 1500 cycles with a decay rate of only 0.018% per cycle at a high charging voltage of 4.45 V. Moreover, the well-designed eutectogel electrolyte can even enable the stable operation of LCO at an extremely high cutoff voltage of 4.6 V. This work introduces a promising avenue for the advancement of eutectogel electrolytes, the nonflammable nature and well-regulated interphase significantly push forward the future application of lithium metal batteries and high-voltage utilization of LCO cathode.

2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474575

RESUMO

Li-rich manganese-based oxide (LRMO) cathode materials are considered to be one of the most promising candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity (250 mAh g-1) and low cost. However, the inevitable irreversible structural transformation during cycling leads to large irreversible capacity loss, poor rate performance, energy decay, voltage decay, etc. Based on the recent research into LRMO for LIBs, this review highlights the research progress of LRMO in terms of crystal structure, charging/discharging mechanism investigations, and the prospects of the solution of current key problems. Meanwhile, this review summarizes the specific modification strategies and their merits and demerits, i.e., surface coating, elemental doping, micro/nano structural design, introduction of high entropy, etc. Further, the future development trend and business prospect of LRMO are presented and discussed, which may inspire researchers to create more opportunities and new ideas for the future development of LRMO for LIBs with high energy density and an extended lifespan.

3.
Chem Soc Rev ; 53(9): 4707-4740, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38536022

RESUMO

Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.

4.
J Colloid Interface Sci ; 661: 781-792, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325176

RESUMO

The increasing requirements for wearable and portable electronics are driving the interests of high performance fiber supercapacitor. Layered double hydroxide (LDH) is broadly used in electrode materials, owing to the adjustability of components and the unique lamellar structure. However, limited active sites and poor electrical conductivity hinder its applications. Herein, the core-shell heterostructured Ni(OH)2@activation Zn-Co-Ni layered double hydroxides (Ni(OH)2@A-ZnCoNi-LDH) electrode was fabricated by loading pseudocapacitance material on the A-ZnCoNi-LDH to improve the electrochemical performance. Significantly, benefits from the synergistic effect of the multi-metal ions and the core-shell heterostructure, the electrodes demonstrated a capacitance of 2405 mF·cm-2 at 1 mA·cm-2. Furthermore, Ni(OH)2@A-ZnCoNi-LDH was used as the core electrode and carbon nanotube (CNT) film coated with Fe2O3@reduced graphene oxide (rGO) was wrapped around the core electrode to assemble coaxial fiber asymmetric supercapacitor, which illustrated an ultrahigh energy density of 177.7 µWh·cm-2 at 0.75 mW·cm-2. In particular, after consecutive charging and discharging 7000 cycles, the capacitance retention of the device was 95 %, indicating the excellent cycling stability. Furthermore, the device with high flexibility can be woven into textiles in different shapes. The fabricated device has an excellent development prospect as an energy source in wearable electronic devices.

5.
Adv Mater ; 36(16): e2311256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181436

RESUMO

Due to low cost and high energy density, sodium metal batteries (SMBs) have attracted growing interest, with great potential to power future electric vehicles (EVs) and mobile electronics, which require rapid charge/discharge capability. However, the development of high-rate SMBs has been impeded by the sluggish Na+ ion kinetics, particularly at the sodium metal anode (SMA). The high-rate operation severely threatens the SMA stability, due to the unstable solid-electrolyte interface (SEI), the Na dendrite growth, and large volume changes during Na plating-stripping cycles, leading to rapid electrochemical performance degradations. This review surveys key challenges faced by high-rate SMAs, and highlights representative stabilization strategies, including the general modification of SMB components (including the host, Na metal surface, electrolyte, separator, and cathode), and emerging solutions with the development of solid-state SMBs and liquid metal anodes; the working principle, performance, and application of these strategies are elaborated, to reduce the Na nucleation energy barriers and promote Na+ ion transfer kinetics for stable high-rate Na metal anodes. This review will inspire further efforts to stabilize SMAs and other metal (e.g., Li, K, Mg, Zn) anodes, promoting high-rate applications of high-energy metal batteries towards a more sustainable society.

6.
Small ; : e2310633, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279636

RESUMO

Silicon-based materials have been considered potential anode materials for next-generation lithium-ion batteries based on their high theoretical capacity and low working voltage. However, side reactions at the Si/electrolyte interface bring annoying issues like low Coulombic efficiency, sluggish ionic transport, and inferior temperature compatibility. In this work, the surface Al2 O3 coating layer is proposed as an artificial solid electrolyte interphase (SEI), which can serve as a physical barrier against the invasion of byproducts like HF(Hydrogen Fluoride) from the decomposition of electrolyte, and acts as a fast Li-ion transport pathway. Besides, the intrinsically high mechanical strength can effectively inhibit the volume expansion of the silicon particles, thus promoting the cyclability. The as-assembled battery cell with the Al2 O3 -coated Si-C anode exhibits a high initial Coulombic efficiency of 80% at RT and a capacity retention ratio up to ≈81.9% after 100 cycles, which is much higher than that of the pristine Si-C anode (≈74.8%). Besides, the expansion rate can also be decreased from 103% to 50%. Moreover, the Al2 O3 -coated Si-C anode also extends the working temperature from room temperature to 0 °C-60 °C. Overall, this work provides an efficient strategy for regulating the interface reactions of Si-based anode and pushes forward the practical applications at real conditions.

7.
Adv Mater ; 36(1): e2305128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555532

RESUMO

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2 Te3 ), coated with polypyrrole (PPy) is proposed. Taking advantage of the PPy coating, the Bi2 Te3 @PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2 Te3 @PPy cathodes exhibit high capacities and ultra-long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition, here the reaction mechanism is analyzed using in situ X-ray diffraction, X-ray photoelectron spectroscopy, and computational tools and it is demonstrated that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIB cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs.

8.
Small ; : e2307260, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054761

RESUMO

All-solid lithium (Li) metal batteries (ASSLBs) with sulfide-based solid electrolyte (SEs) films exhibit excellent electrochemical performance, rendering them capable of satisfying the growing demand for energy storage systems. However, challenges persist in the application of SEs film owing to their reactivity with Li metal and uncontrolled formation of lithium dendrites. In this study, iodine-doped poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) as an interlayer (PHI) to establish a stable interphase between Li metal and Li6 PS5 Cl (LPSCl) films is investigated. The release of I ions and PVDF-HFP produces LiI and LiF, effectively suppressing lithium dendrite growth. Density functional theory calculations show that the synthesized interlayer layer exhibits high interfacial energy. Results show that the PHI@Li/LPSCl film/PHI@Li symmetrical cells can cycle for more than 650 h at 0.1 mA cm-2 . The PHI@Li/LPSCl film/NCM622 cell exhibits a distinct enhancement in capacity retention of ≈26% when using LiNi0.6 Mn0.2 Co0.2 O2 (NCM622) as the cathode, compared to pristine Li metal as the anode. This study presents a feasible method for producing next-generation dendrite-free SEs films, promoting their practical use in ASSLBs.

9.
Small Methods ; : e2301322, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135872

RESUMO

High-entropy oxides (HEOs) have been showing great promise in a wide range of applications. There remains a lack of clarity regarding the influence of nanostructure and composition on their Li storage performance. Herein, a dealloying technique to synthesize hierarchical nanoporous HEOs with tunable compositions is employed. Building upon the extensively studied quinary AlFeNiCrMnOx , an additional element (Co, V, Ti, or Cu) is introduced to create senary HEOs, allowing for investigation of the impact of the added component on Li storage performance. With higher specific surface areas and oxygen vacancy concentrations, all their HEOs exhibit high Li storage performances. Remarkably, the senary HEO with the addition of V (AlNiFeCrMnVOx ) achieves an impressive capacity of 730.2 mAh g-1 at 2.0 A g-1 , which surpasses all reported performance of HEOs. This result demonstrates the synergistic interaction of the six elements in one HEO nanostructure. Additionally, the battery cycling-induced reconstruction and cation diffusion in the HEOs is uncovered, which results in an initial capacity decrease followed by a subsequent continuous capacity increase and enhanced Li ion diffusion. The results highlight the crucial roles played by both nanoporous structure design and composition optimization in enhancing Li storage of HEOs.

10.
ACS Nano ; 17(14): 13256-13268, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37411016

RESUMO

Aqueous zinc-ion batteries (ZIBs) are promising candidates to power flexible integrated functional systems because they are safe and environmentally friendly. Among the numerous cathode materials proposed, Mn-based compounds, particularly MnO2, have attracted special attention because of their high energy density, nontoxicity, and low cost. However, the cathode materials reported so far are characterized by sluggish Zn2+ storage kinetics and moderate stabilities. Herein, a ZIB cathode based on reduced graphene oxide (rGO)-coated MnSe nanoparticles (MnSe@rGO) is proposed. After MnSe was activated to α-MnO2, the ZIB exhibits a specific capacity of up to 290 mAh g-1. The mechanism underlying the improvement in the electrochemical performance of the MnSe@rGO based electrode is investigated using a series of electrochemical tests and first-principles calculations. Additionally, in situ Raman spectroscopy is used to track the phase transition of the MnSe@rGO cathodes during the initial activation, proving the structural evolution from the LO to MO6 mode. Because of the high mechanical stability of MnSe@rGO, flexible miniaturized energy storage devices can be successfully printed using a high-precision electrohydrodynamic (EHD) jet printer and integrated with a touch-controlled light-emitting diode array system, demonstrating the application of flexible EHD jet-printed microbatteries.

11.
Small ; 19(45): e2302934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475503

RESUMO

All-solid-state lithium-ion batteries (ASSLBs) employing silicon (Si) anode and sulfide electrolyte attract much attention, since they can achieve both high energy density and safety. For large-scale application, sheet-type Si anode matching sulfide based ASSLBs is preferred. Here, a LiAlO2 layer coated Si (Si@LiAlO2 ) is reported for sheet-type electrode. This electrode employs conventional slurry coating methods without adding any sulfide electrolyte. The effect of LiAlO2 coating on the electrochemical performance and morphology evolution of Si electrode is investigated. Since the high mechanical strength and ionic conductivity of LiAlO2 layer can sufficiently relieve the huge expansion of Si and promote the Li+ diffusion, the electrochemical performance is significantly enhanced. The Si@LiAlO2 electrodes deliver high coulombic efficiency exceeding 80% and hold considerable specific capacity of 1205 mAh g-1 (150 cycles, 0.33 C). The Si@LiAlO2 | LiNi0.83 Co0.11 Mn0.06 O2 full-cells exhibit a high reversible capacity of 147 mAh g-1 (0.28 mA cm-2 ) and a considerable capacity retention of 80.2% (62 cycles, 2.8 mA cm-2 ). This work demonstrates promising practicability and provides a new route for the scalable preparation of Si electrode sheets for ASSLBs with extended lifespan.

12.
Small ; 19(37): e2302644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144432

RESUMO

Silicon oxide (SiOx ), inheriting the high-capacity characteristic of silicon-based materials but possessing superior cycling stability, is a promising anode material for next-generation Li-ion batteries. SiOx is typically applied in combination with graphite (Gr), but the limited cycling durability of the SiOx /Gr composites curtails large-scale applications. In this work, this limited durability is demonstrated in part related to the presence of a bidirectional diffusion at the SiOx /Gr interface, which is driven by their intrinsic working potential differences and the concentration gradients. When Li on the Li-rich surface of SiOx is captured by Gr, the SiOx surface shrinks, hindering further lithiation. The use of soft carbon (SC) instead of Gr can prevent such instability is further demonstrated. The higher working potential of SC avoids bidirectional diffusion and surface compression thus allowing further lithiation. In this scenario, the evolution of the Li concentration gradient in SiOx conforms to its spontaneous lithiation process, benefiting the electrochemical performance. These results highlight the focus on the working potential of carbon as a strategy for rational optimization of SiOx /C composites toward improved battery performance.

13.
Chemosphere ; 333: 138970, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207902

RESUMO

Considering functional carbon nanodots (FCNs) are potential to be applied in many areas, their risk and toxicity to organisms are imperative to be evaluated. Thus, this study conducted acute toxicity test of zebrafish (Danio rerio) at embryonic and adult stage to estimate the toxicity of FCNs. Results show that the toxic effects of FCNs and nitrogen doped FCNs (N-FCNs) at their 10% lethal concentration (LC10) values on zebrafish are expressed in developmental retardation, cardiovascular toxicity, renal damage and hepatotoxicity. There are interactive relationships between these effects, but the main reason should be ascribed to the undesirable oxidative damage induced by high doses of materials, as well as the biodistribution of FCNs and N-FCNs in vivo. Even so, FCNs and N-FCNs can promote the antioxidant activity in zebrafish tissues to cope with the oxidative stress. FCNs and N-FCNs are not easy to cross the physical barriers in zebrafish embryos or larvae, and can be excreted from intestine by adult fish, which proves their biosecurity to zebrafish. In addition, because of the differences in physicochemical properties, especially nano-size and surface chemical property, FCNs show higher biosecurity to zebrafish than N-FCNs. The effects of FCNs and N-FCNs on hatching rates, mortality rates and developmental malformations are dose-dependent and time-dependent. The LC50 values of FCNs and N-FCNs on zebrafish embryo at 96 hpf are 1610 mg/L and 649 mg/L, respectively. According to the Acute Toxicity Rating Scale of the Fish and Wildlife Service, the toxicity grades of FCNs and N-FCNs are both defined as "practically nontoxic", and FCNs are "Relatively Harmless" to embryos because their LC50 values are above 1000 mg/L. Our results prove the biosecurity of FCNs-based materials for future practical application.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Embrião não Mamífero , Distribuição Tecidual , Antioxidantes/farmacologia , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
14.
Small ; 19(30): e2300612, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058090

RESUMO

Anchoring single metal atom to carbon supports represents an exceptionally effective strategy to maximize the efficiency of catalysts. Recently, dual-atom catalysts (DACs) emerge as an intriguing candidate for atomic catalysts, which perform better than single-atom catalysts (SACs). However, the clarification of the polynary single-atom structures and their beneficial effects remains a daunting challenge. Here, atomically dispersed triple Zn-Co-Fe sites anchored to nitrogen-doped carbon (ZnCoFe-N-C) prepared by one-step pyrolysis of a designed metal-organic framework precursor are reported. The atomically isolated trimetallic configuration in ZnCoFe-N-C is identified by annular dark-field scanning transmission electron microscopy and spectroscopic techniques. Benefiting from the synergistic effect of trimetallic single atoms, nitrogen, and carbon, ZnCoFe-N-C exhibits excellent catalytic performance in bifunctional oxygen reduction/evolution reactions in an alkaline medium, outperforming other SACs and DACs. The ZnCoFe-N-C-based Zn-air battery exhibits a high specific capacity (liquid state: 931.8 Wh kgZn -1 ), power density (liquid state: 137.8 mW cm-2 ; all-solid-state: 107.9 mW cm-2 ), and good cycling stability. Furthermore, density-functional theory calculations rationalize the excellent performance by demonstrating that the ZnCoFe-N-C catalyst has upshifted d-band center that enhances the adsorption of the reaction intermediates.

15.
Small ; 19(25): e2300759, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919820

RESUMO

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

16.
ACS Appl Mater Interfaces ; 14(50): 55727-55734, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36473048

RESUMO

Sulfide-based solid electrolytes are considered ideal materials for all-solid-state Li metal batteries owing to their high ion conductivity and satisfactory mechanical stiffness. However, the interfacial reaction between the sulfide electrolyte membrane and Li anode severely limits the commercial application of such membranes. Herein, a lithium iodide (LiI) layer is synthesized at the Li metal-sulfide electrolyte membrane interface via chemical vapor deposition. The synthesized LiI layer exhibits satisfactory ionic conductivity and high interfacial energy, as confirmed via density functional theory calculations. Consequently, the LiI@Li/Li6PS5Cl membrane/LiI@Li symmetric cell can cycle for >150 h at 0.1 mA cm-2. The as-prepared all-solid-state batteries exhibit a high discharge capacity of 107 mA h g-1 and an excellent capacity retention of 76% after 800 cycles at 1 C. This work offers a simple and effective method to improve the interface between the Li anode and sulfide electrolyte membranes that facilitates the mass production and practical application of high-energy-density sulfide-based all-solid-state batteries.

17.
Appl Phys A Mater Sci Process ; 128(12): 1065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406017

RESUMO

Recently, the problem of water pollution, caused by antibiotics, is becoming more and more serious. Photocatalysis is one of the promising technologies for removing antibiotics from water. Herein, the In2.77S4/Ti3C2 composites were prepared by an in-situ hydrothermal growth method for photocatalytic degradation of tetracycline (TC). The as-developed composites were characterized by various methods. The UV-Vis DRS spectra reveals that the introduction of Ti3C2 makes the bandgap of the as-prepared composites smaller and the visible light absorption ability improved. The photocatalytic degradation efficiency of the as-prepared composite is enhanced under visible light illumination. It is shown as first increasing and then decreasing with increasing the content of Ti3C2 in the composite and reaches to the maximum of 89.3% in 90 min, which is higher than 75.1% of In2.77S4 and 6.7% of Ti3C2. The reason of improvement is the interface between In2.77S4 and Ti3C2 is tightly combined to form a heterojunction. Moreover, the photocurrent intensity of the as-obtained composite is improved, while its Nyquist arc radius is decreased. In addition, holes are the main active species and ·OH and ·O2 - play an auxiliary role during the degradation of TC.

18.
ACS Nano ; 16(9): 14558-14568, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36040142

RESUMO

The development of electrolytes with high safety, high ionic conductivity, and the ability to inhibit lithium dendrites growth is crucial for the fabrication of high-energy-density lithium metal batteries. In this study, a ternary eutectic electrolyte is designed with LiTFSI (TFSI = bis(trifluoromethanesulfonyl)imide), butyrolactam (BL), and succinonitrile (SN). This electrolyte exhibits a high ion conductivity, nonflammability, and a wide electrochemical window. The competitive solvation effect among SN, BL, and Li+ reduces the viscosity and improves the stability of the eutectic electrolyte. The preferential coordination of BL toward Li+ facilitates the formation of stable solid electrolyte interphase films, leading to homogeneous and dendrite-free Li plating. As expected, the LiFePO4/Li cell with this ternary eutectic electrolyte delivers a high capacity retention of 90% after 500 cycles at 2 C and an average Coulombic efficiency of 99.8%. Moreover, Ni-rich LiNi0.8Co0.1Al0.1O2/Li and LiNi0.8Co0.1Mn0.1O2/Li cells based on the modified ternary eutectic electrolyte achieve an outstanding cycling performance. This study provides insights for understanding and designing better electrolytes for lithium metal batteries and analogous sodium/potassium metal batteries.

19.
Small ; 18(39): e2203459, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026577

RESUMO

Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.

20.
Sci Total Environ ; 830: 154817, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341861

RESUMO

High salinity and alkalinity of saline-alkali soil lead to soil deterioration, the subsequent osmotic stress and ion toxicity inhibited crops growth and productivity. In this research, 8 mg kg-1 and 16 mg kg-1 functional carbon nanodots (FCNs) can alleviate the adverse effects of saline-alkali on tomato plant at both seedling and harvest stages, thanks to their up-regulation effects on soil properties and plant physiological processes. On one hand, FCNs stimulate the plant potential of tolerance to saline-alkali and disease resistance through triggering the defense response of antioxidant system, enhancing the osmotic adjustment, promoting the nutrient uptake, transportation and utilization, and up-regulating the photosynthesis, thereby improve tomato growth and productivity in saline-alkali soils. On the other hand, FCNs application contributes to the improvement of soil physicochemical properties and fertilities, as well as decline soil salinity and alkalinity, which are related to plant growth and fruit quality. This research also focuses on the dose-dependent effects of FCNs on their regulation effects and toxicity to tomato growth under stress or non-stress. These findings recommend that FCNs could be applied as potential amendments to ameliorate the saline-alkali soil and improve the tomato tolerance and productivity in the Yellow River Delta.


Assuntos
Solo , Solanum lycopersicum , Álcalis , Carbono , Nanotubos , Salinidade , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA